L

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

20 Weeks to 12+ LPA Dream Job ﬂ
A Step-by-Step DSA Plan in C++/Java to Land High-Paying Roles

[i] Duration: (Module 1) — DSA - 12 Weeks
B Goal: Secure packages up to 12+ LPA in 12 Weeks DSA

Week 1: Basics + Patterns
e Step-by-step Learning:

o C++/lava Basics: Input/Output, Data Types, Operators, Loops (for, while), Conditional
Statements.

o Functions: Introduction to functions, Pass by Value vs. Reference, Function Overloading.
o Patterns: Triangle, Diamond, Pascal’s Triangle, Hollow Shapes.
e Practice:
o Simple mathematical problems (e.g., prime numbers, GCD, factorial).
o Solve 10+ pattern problems.
e Outcome:

o Comfort with basic syntax, control flow, and problem-solving.

Week 2: Arrays + 2D Arrays + Strings
e Step-by-step Learning:

o Arrays: Introduction, Operations (Insertion, Deletion, Traversal), Common Problems (e.g.,
Max/Min Element, Reverse Array).

o 2D Arrays: Matrix Initialization, Row/Column-wise Operations, Basic Problems (e.g.,
Matrix Transpose, Diagonal Sum).

o Strings: Basics, Standard Library Functions (length (), substr(), etc.), String Reversal,
Palindromes.

e Practice:

o 15 problems: Rotating arrays, Matrix problems, and String manipulations.

e Outcome:

o Strong foundation in arrays and strings.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

Week 3: Time and Space Complexity + HashMap's
e Step-by-step Learning:
o Complexity Analysis: Big-O Notation, Common Complexities (O(1), O(n), O(n?)).
o Space Complexity: How to analyze memory usage.
o HashMap’s: Basics, Implementation, Applications (Frequency Count, Two Sum).
e Practice:
o 10 problems: Frequency counting, Subarrays with a given sum, Two Sum.
e Outcome:

o Ability to analyze the efficiency of code and use hashmaps effectively.

Week 4: Recursion - Part 1

e Step-by-step Learning:
o Basics of Recursion: Base Case, Recursive Case.
o Problems: Factorial, Fibonacci, Sum of Digits, Power Calculation.
o Recursion Tree Visualization.

e Practice:
o 10 beginner problems (simple mathematical recursion).

e Outcome:

o Clear understanding of recursion fundamentals.

Week 5: Recursion - Part 2
e Step-by-step Learning:
o Backtracking: Introduction, Problems like N-Queens, Rat in a Maze.
o Advanced Recursion Problems: Permutations, Subsets, Word Search.
e Practice:
o 10+ intermediate problems on backtracking.
e Outcome:

o Confidence in solving recursion and backtracking problems.

L

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

Week 6: Complete OOP’s + STL
e Step-by-step Learning:
o Object-Oriented Programming:
= Classes and Objects.
= Encapsulation, Abstraction, Inheritance, Polymorphism.

o STL (Standard Template Library): Basics (Vectors, Pairs, Sets, Maps).

e Practice:
o Write basic programs using OOP principles.
e Outcome:

o Solid understanding of OOP and STL basics.

Week 7: Linked Lists

e Step-by-step Learning:
o Basics of Singly Linked List: Insertion, Deletion, Reversal.
o Doubly Linked List and Circular Linked List.
o Problems: Detect Cycle, Intersection of Two Lists.

e Practice:
o 10+ problems on Linked Lists.

e Outcome:

o Mastery over Linked List operations and common problems.

Week 8: Stacks & Queues
e Step-by-step Learning:

o Stack: Implementation using Arrays/Linked Lists, Applications (Balanced Parentheses,
Infix to Postfix).

o Queue and Deque: Implementation, Applications (Sliding Window Maximum).
o Priority Queue (Heap): Introduction, Min-Heap, Max-Heap.
e Practice:

o 10 problems on Stacks and Queues.

L

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

e OQOutcome:

o Clear understanding of stack and queue operations.

Week 9: Trees & Binary Trees
e Step-by-step Learning:
o Binary Trees: Basics, Traversals (Preorder, Inorder, Postorder, Level Order).
o Binary Tree Problems: Height, Diameter, Symmetry Check.
e Practice:
o 10+ problems on trees.
e Outcome:

o Strong grasp of tree structures and traversal methods.

Week 10: Binary Search Trees
e Step-by-step Learning:
o Binary Search Tree (BST): Basics, Operations (Insertion, Deletion, Search).
o Problems: LCA in BST, Validate BST, Kth Smallest Element.
e Practice:
o Solve 10 problems on BST.
e Outcome:

o Confidence in handling BST problems.

Week 11: Priority Queues & Tries
e Step-by-step Learning:
o Priority Queues: Applications in real-world scenarios (e.g., Huffman Coding).
o Tries: Basics, Insert/Search Words, Prefix Matching.
e Practice:
o 10+ problems on priority queues and Tries.
e Outcome:

o Proficiency in advanced data structures.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!
Week 12 (Optional-Advanced): Dynamic Programming + Graphs
Step-by-step Learning:
e Basics of DP: Memoization, Tabulation.
e Classic Problems: Knapsack, Subset Sum, Longest Common Subsequence.

e Graphs: Graph Representation (Adjacency Matrix/Adjacency List), Traversal (BFS, DFS), Shortest
Path Algorithms (Dijkstra’s).

Practice:
e 10 problems from beginner to intermediate level.

Outcome:
Ability to break complex problems into smaller subproblems and solve graph-related challenges.

Explanation of Package Ranges
1. Upto Week 6: (Up to 6 LPA)

o Students are prepared for service-based companies (TCS, Infosys, Wipro, Accenture,
Capegmini etc.).

o Typical problems include array manipulations, basic recursion, and basic hashmaps.

2. Weeks 7-10: (Upto 10 LPA)
o Students gain the skills to tackle mid-level product companies (e.g., Paytm, Ola, Swiggy).
o Proficiency in linked lists, stacks, queues, trees, and STL.

3. Weeks 11-12: (12+ LPA)

o Mastery of advanced topics like graphs, dynamic programming, and tries prepares
students for top-tier product companies (e.g., Amazon, Microsoft, Adobe, Google).

o Solving graph problems and optimizing solutions are essential for salaries 12+ LPA.

Key Highlights of the 12 Weeks to 12 LPA Dream Job Plan ﬂ
e Structured Curriculum: Step-by-step learning from basics to advanced DSA.
e Assignments After Every Class: Practice problems to reinforce every concept.
e Total Problems Solved: Solve 200-300 problems during the course.
¢ Placement-Oriented: Tailored to crack service-based and product-based interviews.

e Focus on Real-World Skills: Learn optimization with time and space complexity.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

Week 13: Node.js & Express.js (Module 2 — Backend)

¢ Node.js Basics:

o Introduction to Node.js and event-driven architecture.

o Working with modules and npm.

o Asynchronous programming with callbacks, Promises, and async/await.
e Express.js Basics:

o Setting up an Express.js server.

o Creating routes and middleware for request handling.
e Minor Project:

o Create a basic HTTP server using Node.js.

o Build a simple Express.js server with basic routing.

Outcome: Understand Node.js fundamentals and how to build simple web servers with Express.js.

Week 14: APIs & Postman

e API Concepts:
o RESTful API architecture and best practices.
o HTTP methods (GET, POST, PUT, DELETE).
o Building RESTful APIs with Express.js.
e Postman for API Testing:
o Introduction to Postman.
o Sending requests and testing APl endpoints.
o Automating tests and workflows using Postman.
e Minor Project:
o Build a RESTful API for a simple user management system.
o Test the APl using Postman.

Outcome: Learn API design principles, build and test APls using Postman.

Week 15: PostgreSQL & Prisma

e PostgreSQL Basics:
o Introduction to PostgreSQL: querying, joins, and CRUD operations.
o Setting up and interacting with a PostgreSQL database.
e Prisma ORM:
o Introduction to Prisma and how to set it up with Node.js.
o Performing CRUD operations with Prisma.
o Integrating Prisma with PostgreSQL.
e Minor Project:
o Build a RESTful API using Prisma for database interaction with PostgreSQL.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

Outcome: Understand relational databases (PostgreSQL), use Prisma for ORM integration.

Week 16: Authentication & Security

e User Authentication:

o Implement JWT authentication.

o Passport.js for handling different authentication strategies.
e Security Best Practices:

o Preventing XSS, CSRF, SQL Injection.

o Encrypting passwords and securing sensitive data.
e Minor Project:

o Secure APl with JWT and Passport.js.

o Apply security best practices to your API.

Outcome: Learn how to implement secure user authentication and protect APIs from common
vulnerabilities.

Week 17: Backend with Frontend + Testing

e Integrating Frontend with Backend:

o Connecting React with your RESTful APl using Axios.

o Handling responses, errors, and displaying data on the frontend.
o Testing:

o Introduction to unit and integration testing.

o Using Jest and Supertest to test APIs.

o Writing test cases for backend functionality.
e Minor Project:

o Build a full-stack application (frontend with React and backend with Node.js and

Express).
o Write test cases for the backend API.

Outcome: Learn how to connect a backend with a frontend and ensure the functionality is working with
tests.

Week 18: Deployment

¢ Version Control with Git & GitHub:
o Learn Git basics (commits, branches, merges).
o Using GitHub for code collaboration and version control.
¢ Deployment:
o Deploying Node.js apps with GitHub Pages, Heroku, and MongoDB Atlas.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

o Continuous Integration/Continuous Deployment (CI/CD) basics.
o Deploy to AWS (EC2, S3, RDS, etc.).
e Minor Project:
o Deploy a personal website on GitHub Pages.
o Deploy a full-stack application to Heroku.

Outcome: Learn how to deploy applications and collaborate using Git/GitHub.

Projects Overview:

e Minor Projects: Small web applications focused on individual backend topics (e.g., user
management, API testing, authentication).
e Major Projects:
o Full-stack web applications (e.g., blogging platform, user management system, social
media platform).

Week 18: Aptitude Basics + Logical Reasoning
¢ Quantitative Aptitude:
¢ Number Systems: Understanding types of numbers (odd, even, prime), divisibility rules.
e Percentages & Profit and Loss: Calculating profit, loss, discount, and percentage changes.
¢ Time, Speed, and Distance: Solving relative speed, boats & streams, and train problems.

e Ratios & Proportions: Solving problems with simple and compound ratios.
¢ Logical Reasoning:

e Syllogism: Identifying relationships and making deductions.
e Blood Relations: Solving family tree-based problems.

¢ Number Series: Identifying and completing patterns in number series.
e Practice:

e Solve 20-30 practice problems each day for reinforcement.
Outcome: Strengthen basic concepts in quantitative aptitude and logical reasoning.

Week 19: Advanced Aptitude + Mock Practice
¢ Advanced Quantitative Aptitude:

e Permutations & Combinations: Learn and practice basic counting principles, and
combination/permutation problems.

e Probability: Basic probability theory, and solving problems on dice, cards, and coins.

L

CODING SAVVY

Be a Savvy Coder!

DSA — Placement Supreme Batch

Work and Time (Advanced): Solving complex work-related problems involving pipes, cisterns,
and efficiency.

Averages & Mixtures: Solving problems with weighted averages and mixture/allegation rule.
¢ Logical Reasoning:

Critical Reasoning: Deductive and inductive reasoning, and analyzing arguments and
conclusions.

Puzzles & Data Interpretation: Solving complex seating arrangement and data-based puzzles.
* Mock Tests:

Take 2-3 timed mock tests to practice real exam conditions.

Analyze the results and focus on weaker areas.
Outcome: Master advanced topics in aptitude and practice solving problems in mock tests under
time constraints.

Week 20: System Design Fundamentals + Case Studies

¢ Introduction to System Design:

System Design Basics: Learn the fundamentals of system design (scalability, reliability, fault
tolerance).

Key Concepts: Understand high-level system design concepts like load balancing, sharding, and
distributed systems.
* Design Patterns & Principles:

Common Design Patterns: Study design patterns like Singleton, Factory, Observer, etc.

Database Design: Learn about normalization, indexing, and ER diagrams.
e Case Studies:

Design real-world systems such as an e-commerce platform, URL shortening service, or social
media application.

Focus on scalability, performance, and fault tolerance.
¢ Practice:

Work through 2-3 real-world system design case studies, explaining your thought process and
design decisions.

Outcome: Build a foundational understanding of system design and be able to design scalable
systems.

CODING SAVVY DSA — Placement Supreme Batch

Be a Savvy Coder!

Week 21: Mock SDE Sessions (Aptitude, System Design & DSA Coding)
¢ Mock System Design Interviews:
e Conduct 2-3 mock system design interviews with peers/mentors.

e Focus on breaking down requirements, designing scalable systems, and explaining trade-offs.
¢ Coding Interviews:

e Data Structures & Algorithms: Solve problems related to arrays, linked lists, trees, graphs, and
dynamic programming.

e Practice: Take 2-3 mock coding interviews to simulate real-time problem-solving.

e Focus on writing clean code and explaining the solution in detail.
¢ Mock Aptitude Sessions:

e Take 2-3 full-length timed mock aptitude tests.

e Focus on time management and analyze performance.
¢ Feedback & Iteration:

e Review mock interview results and focus on areas of improvement.

e |terate on problem-solving approaches based on feedback.
Outcome: Refine interview skills through mock system design, coding, and aptitude sessions to
prepare for real interviews.

