
DSA – Placement Supreme Batch

20 Weeks to 12+ LPA Dream Job ⶱⶲⶳⶴⶵⶶ⶷ⶸⶹ

A Step-by-Step DSA Plan in C++/Java to Land High-Paying Roles

🗓 DuraƟon: (Module 1) – DSA - 12 Weeks
 ണതഥദ Goal: Secure packages up to 12+ LPA in 12 Weeks DSA

Week 1: Basics + PaƩerns

 Step-by-step Learning:

o C++/Java Basics: Input/Output, Data Types, Operators, Loops (for, while), CondiƟonal
Statements.

o FuncƟons: IntroducƟon to funcƟons, Pass by Value vs. Reference, FuncƟon Overloading.

o PaƩerns: Triangle, Diamond, Pascal’s Triangle, Hollow Shapes.

 PracƟce:

o Simple mathemaƟcal problems (e.g., prime numbers, GCD, factorial).

o Solve 10+ paƩern problems.

 Outcome:

o Comfort with basic syntax, control flow, and problem-solving.

Week 2: Arrays + 2D Arrays + Strings

 Step-by-step Learning:

o Arrays: IntroducƟon, OperaƟons (InserƟon, DeleƟon, Traversal), Common Problems (e.g.,
Max/Min Element, Reverse Array).

o 2D Arrays: Matrix IniƟalizaƟon, Row/Column-wise OperaƟons, Basic Problems (e.g.,
Matrix Transpose, Diagonal Sum).

o Strings: Basics, Standard Library FuncƟons (length (), substr(), etc.), String Reversal,
Palindromes.

 PracƟce:

o 15 problems: RotaƟng arrays, Matrix problems, and String manipulaƟons.

 Outcome:

o Strong foundaƟon in arrays and strings.

DSA – Placement Supreme Batch

Week 3: Time and Space Complexity + HashMap’s

 Step-by-step Learning:

o Complexity Analysis: Big-O NotaƟon, Common ComplexiƟes (O(1), O(n), O(n²)).

o Space Complexity: How to analyze memory usage.

o HashMap’s: Basics, ImplementaƟon, ApplicaƟons (Frequency Count, Two Sum).

 PracƟce:

o 10 problems: Frequency counƟng, Subarrays with a given sum, Two Sum.

 Outcome:

o Ability to analyze the efficiency of code and use hashmaps effecƟvely.

Week 4: Recursion - Part 1

 Step-by-step Learning:

o Basics of Recursion: Base Case, Recursive Case.

o Problems: Factorial, Fibonacci, Sum of Digits, Power CalculaƟon.

o Recursion Tree VisualizaƟon.

 PracƟce:

o 10 beginner problems (simple mathemaƟcal recursion).

 Outcome:

o Clear understanding of recursion fundamentals.

Week 5: Recursion - Part 2

 Step-by-step Learning:

o Backtracking: IntroducƟon, Problems like N-Queens, Rat in a Maze.

o Advanced Recursion Problems: PermutaƟons, Subsets, Word Search.

 PracƟce:

o 10+ intermediate problems on backtracking.

 Outcome:

o Confidence in solving recursion and backtracking problems.

DSA – Placement Supreme Batch

Week 6: Complete OOP’s + STL

 Step-by-step Learning:

o Object-Oriented Programming:

 Classes and Objects.

 EncapsulaƟon, AbstracƟon, Inheritance, Polymorphism.

o STL (Standard Template Library): Basics (Vectors, Pairs, Sets, Maps).

 PracƟce:

o Write basic programs using OOP principles.

 Outcome:

o Solid understanding of OOP and STL basics.

Week 7: Linked Lists

 Step-by-step Learning:

o Basics of Singly Linked List: InserƟon, DeleƟon, Reversal.

o Doubly Linked List and Circular Linked List.

o Problems: Detect Cycle, IntersecƟon of Two Lists.

 PracƟce:

o 10+ problems on Linked Lists.

 Outcome:

o Mastery over Linked List operaƟons and common problems.

Week 8: Stacks & Queues

 Step-by-step Learning:

o Stack: ImplementaƟon using Arrays/Linked Lists, ApplicaƟons (Balanced Parentheses,
Infix to Posƞix).

o Queue and Deque: ImplementaƟon, ApplicaƟons (Sliding Window Maximum).

o Priority Queue (Heap): IntroducƟon, Min-Heap, Max-Heap.

 PracƟce:

o 10 problems on Stacks and Queues.

DSA – Placement Supreme Batch

 Outcome:

o Clear understanding of stack and queue operaƟons.

Week 9: Trees & Binary Trees

 Step-by-step Learning:

o Binary Trees: Basics, Traversals (Preorder, Inorder, Postorder, Level Order).

o Binary Tree Problems: Height, Diameter, Symmetry Check.

 PracƟce:

o 10+ problems on trees.

 Outcome:

o Strong grasp of tree structures and traversal methods.

Week 10: Binary Search Trees

 Step-by-step Learning:

o Binary Search Tree (BST): Basics, OperaƟons (InserƟon, DeleƟon, Search).

o Problems: LCA in BST, Validate BST, Kth Smallest Element.

 PracƟce:

o Solve 10 problems on BST.

 Outcome:

o Confidence in handling BST problems.

Week 11: Priority Queues & Tries

 Step-by-step Learning:

o Priority Queues: ApplicaƟons in real-world scenarios (e.g., Huffman Coding).

o Tries: Basics, Insert/Search Words, Prefix Matching.

 PracƟce:

o 10+ problems on priority queues and Tries.

 Outcome:

o Proficiency in advanced data structures.

DSA – Placement Supreme Batch

Week 12 (OpƟonal-Advanced): Dynamic Programming + Graphs

Step-by-step Learning:

 Basics of DP: MemoizaƟon, TabulaƟon.

 Classic Problems: Knapsack, Subset Sum, Longest Common Subsequence.

 Graphs: Graph RepresentaƟon (Adjacency Matrix/Adjacency List), Traversal (BFS, DFS), Shortest
Path Algorithms (Dijkstra’s).

PracƟce:

 10 problems from beginner to intermediate level.

Outcome:
Ability to break complex problems into smaller subproblems and solve graph-related challenges.

ExplanaƟon of Package Ranges

1. Up to Week 6: (Up to 6 LPA)

o Students are prepared for service-based companies (TCS, Infosys, Wipro, Accenture,
Capegmini etc.).

o Typical problems include array manipulaƟons, basic recursion, and basic hashmaps.

2. Weeks 7–10: (Upto 10 LPA)

o Students gain the skills to tackle mid-level product companies (e.g., Paytm, Ola, Swiggy).

o Proficiency in linked lists, stacks, queues, trees, and STL.

3. Weeks 11–12: (12+ LPA)

o Mastery of advanced topics like graphs, dynamic programming, and tries prepares
students for top-Ɵer product companies (e.g., Amazon, MicrosoŌ, Adobe, Google).

o Solving graph problems and opƟmizing soluƟons are essenƟal for salaries 12+ LPA.

Key Highlights of the 12 Weeks to 12 LPA Dream Job Plan ⶱⶲⶳⶴⶵⶶ⶷ⶸⶹ

 Structured Curriculum: Step-by-step learning from basics to advanced DSA.

 Assignments AŌer Every Class: PracƟce problems to reinforce every concept.

 Total Problems Solved: Solve 200–300 problems during the course.

 Placement-Oriented: Tailored to crack service-based and product-based interviews.

 Focus on Real-World Skills: Learn opƟmizaƟon with Ɵme and space complexity.

DSA – Placement Supreme Batch

Week 13: Node.js & Express.js (Module 2 – Backend)

 Node.js Basics:
o IntroducƟon to Node.js and event-driven architecture.
o Working with modules and npm.
o Asynchronous programming with callbacks, Promises, and async/await.

 Express.js Basics:
o Seƫng up an Express.js server.
o CreaƟng routes and middleware for request handling.

 Minor Project:
o Create a basic HTTP server using Node.js.
o Build a simple Express.js server with basic rouƟng.

Outcome: Understand Node.js fundamentals and how to build simple web servers with Express.js.

Week 14: APIs & Postman

 API Concepts:
o RESTful API architecture and best pracƟces.
o HTTP methods (GET, POST, PUT, DELETE).
o Building RESTful APIs with Express.js.

 Postman for API TesƟng:
o IntroducƟon to Postman.
o Sending requests and tesƟng API endpoints.
o AutomaƟng tests and workflows using Postman.

 Minor Project:
o Build a RESTful API for a simple user management system.
o Test the API using Postman.

Outcome: Learn API design principles, build and test APIs using Postman.

Week 15: PostgreSQL & Prisma

 PostgreSQL Basics:
o IntroducƟon to PostgreSQL: querying, joins, and CRUD operaƟons.
o Seƫng up and interacƟng with a PostgreSQL database.

 Prisma ORM:
o IntroducƟon to Prisma and how to set it up with Node.js.
o Performing CRUD operaƟons with Prisma.
o IntegraƟng Prisma with PostgreSQL.

 Minor Project:
o Build a RESTful API using Prisma for database interacƟon with PostgreSQL.

DSA – Placement Supreme Batch

Outcome: Understand relaƟonal databases (PostgreSQL), use Prisma for ORM integraƟon.

Week 16: AuthenƟcaƟon & Security

 User AuthenƟcaƟon:
o Implement JWT authenƟcaƟon.
o Passport.js for handling different authenƟcaƟon strategies.

 Security Best PracƟces:
o PrevenƟng XSS, CSRF, SQL InjecƟon.
o EncrypƟng passwords and securing sensiƟve data.

 Minor Project:
o Secure API with JWT and Passport.js.
o Apply security best pracƟces to your API.

Outcome: Learn how to implement secure user authenƟcaƟon and protect APIs from common
vulnerabiliƟes.

Week 17: Backend with Frontend + TesƟng

 IntegraƟng Frontend with Backend:
o ConnecƟng React with your RESTful API using Axios.
o Handling responses, errors, and displaying data on the frontend.

 TesƟng:
o IntroducƟon to unit and integraƟon tesƟng.
o Using Jest and Supertest to test APIs.
o WriƟng test cases for backend funcƟonality.

 Minor Project:
o Build a full-stack applicaƟon (frontend with React and backend with Node.js and

Express).
o Write test cases for the backend API.

Outcome: Learn how to connect a backend with a frontend and ensure the funcƟonality is working with
tests.

Week 18: Deployment

 Version Control with Git & GitHub:
o Learn Git basics (commits, branches, merges).
o Using GitHub for code collaboraƟon and version control.

 Deployment:
o Deploying Node.js apps with GitHub Pages, Heroku, and MongoDB Atlas.

DSA – Placement Supreme Batch

o ConƟnuous IntegraƟon/ConƟnuous Deployment (CI/CD) basics.
o Deploy to AWS (EC2, S3, RDS, etc.).

 Minor Project:
o Deploy a personal website on GitHub Pages.
o Deploy a full-stack applicaƟon to Heroku.

Outcome: Learn how to deploy applicaƟons and collaborate using Git/GitHub.

Projects Overview:

 Minor Projects: Small web applicaƟons focused on individual backend topics (e.g., user
management, API tesƟng, authenƟcaƟon).

 Major Projects:
o Full-stack web applicaƟons (e.g., blogging plaƞorm, user management system, social

media plaƞorm).

Week 18: ApƟtude Basics + Logical Reasoning

• QuanƟtaƟve ApƟtude:

 Number Systems: Understanding types of numbers (odd, even, prime), divisibility rules.

 Percentages & Profit and Loss: CalculaƟng profit, loss, discount, and percentage changes.

 Time, Speed, and Distance: Solving relaƟve speed, boats & streams, and train problems.

 RaƟos & ProporƟons: Solving problems with simple and compound raƟos.
• Logical Reasoning:

 Syllogism: IdenƟfying relaƟonships and making deducƟons.

 Blood RelaƟons: Solving family tree-based problems.

 Number Series: IdenƟfying and compleƟng paƩerns in number series.
• PracƟce:

 Solve 20-30 pracƟce problems each day for reinforcement.
Outcome: Strengthen basic concepts in quanƟtaƟve apƟtude and logical reasoning.

Week 19: Advanced ApƟtude + Mock PracƟce

• Advanced QuanƟtaƟve ApƟtude:

 PermutaƟons & CombinaƟons: Learn and pracƟce basic counƟng principles, and
combinaƟon/permutaƟon problems.

 Probability: Basic probability theory, and solving problems on dice, cards, and coins.

DSA – Placement Supreme Batch

 Work and Time (Advanced): Solving complex work-related problems involving pipes, cisterns,

and efficiency.

 Averages & Mixtures: Solving problems with weighted averages and mixture/allegaƟon rule.
• Logical Reasoning:

 CriƟcal Reasoning: DeducƟve and inducƟve reasoning, and analyzing arguments and
conclusions.

 Puzzles & Data InterpretaƟon: Solving complex seaƟng arrangement and data-based puzzles.
• Mock Tests:

 Take 2-3 Ɵmed mock tests to pracƟce real exam condiƟons.

 Analyze the results and focus on weaker areas.
Outcome: Master advanced topics in apƟtude and pracƟce solving problems in mock tests under
Ɵme constraints.

Week 20: System Design Fundamentals + Case Studies

• IntroducƟon to System Design:

 System Design Basics: Learn the fundamentals of system design (scalability, reliability, fault
tolerance).

 Key Concepts: Understand high-level system design concepts like load balancing, sharding, and
distributed systems.
• Design PaƩerns & Principles:

 Common Design PaƩerns: Study design paƩerns like Singleton, Factory, Observer, etc.

 Database Design: Learn about normalizaƟon, indexing, and ER diagrams.
• Case Studies:

 Design real-world systems such as an e-commerce plaƞorm, URL shortening service, or social
media applicaƟon.

 Focus on scalability, performance, and fault tolerance.
• PracƟce:

 Work through 2-3 real-world system design case studies, explaining your thought process and
design decisions.
Outcome: Build a foundaƟonal understanding of system design and be able to design scalable
systems.

DSA – Placement Supreme Batch

Week 21: Mock SDE Sessions (ApƟtude, System Design & DSA Coding)

• Mock System Design Interviews:

 Conduct 2-3 mock system design interviews with peers/mentors.

 Focus on breaking down requirements, designing scalable systems, and explaining trade-offs.
• Coding Interviews:

 Data Structures & Algorithms: Solve problems related to arrays, linked lists, trees, graphs, and
dynamic programming.

 PracƟce: Take 2-3 mock coding interviews to simulate real-Ɵme problem-solving.

 Focus on wriƟng clean code and explaining the soluƟon in detail.
• Mock ApƟtude Sessions:

 Take 2-3 full-length Ɵmed mock apƟtude tests.

 Focus on Ɵme management and analyze performance.
• Feedback & IteraƟon:

 Review mock interview results and focus on areas of improvement.

 Iterate on problem-solving approaches based on feedback.
Outcome: Refine interview skills through mock system design, coding, and apƟtude sessions to
prepare for real interviews.

